LUMEL

4-CHANNEL MODULE OF ANALOG INPUTS SM2

USER'S MANUAL c

CONTENTS

1. APPLICATION 3
2. MODULE SET 4
3. BASIC REQUIREMENTS AND OPERATIONAL SAFETY 4
4. INSTALLATION 7
4.1. Way of fixing 7
4.2. Diagrams of external connections 7
5. HANDLING 10
5.1. Description of the MODBUS protocol implementation 10
5.2. Description of the MODBUS protocol function 11
5.3. Map of registers 14
5.4. Registers only for readout 15
5.5. Registers for write and readout 19
6. TECHNICAL DATA 31
7. BEFORE A DAMAGE WILL BE DECLARED 33
8. EXAMPLES OF THE SM2 MODULE PROGRAMMING 34
9. ORDERING CODES 38

1. APPLICATION

the SM2 4-channel module of analog inputs is destined to convert standard signals, resistance or temperature signals into numerical data accessible through the RS-485 or RS-232 port by means of the MODBUS protocol.
The measurement is carried out independently on four, galvanically insulated between them channels. RS-485 and RS-232 output ports are galvanically insulated from input signals and the supply. The module programming is possible by means of the RS-485 or RS-232 port. In the set of SM2 module there is a connecting cable, to connect with the PC computer (RS-232).
The SM2 module realises following functions:

- mathematical operations on channels and between measuring channels,
- conversion of measured or calculated quantities basing on the individual linear characteristic,
- storage of maximal and minimal values for each channel,
- programmable digital filter for measurement, independently for each channel,
- handling of RS-485 and RS-232 interfaces in MODBUS protocol, in RTU mode,
- change of the OC type output state basing on set alarm values.

Fig. 1. View of the SM2 module

2. SET OF THE SM2 MODULE

The set consists of:

- SM2 module .. 1 pc.
- plug with screw terminals .. 4 pcs
- hole plug of the RS-485 and RS-232 sockets 2 pc

When unpacking the module, please check whether the type and execution code on the data plate correspond to the order.

3. BASIC REQUIREMENTS, SAFETY INFORMATION

Symbols located in this service manual mean:

WARNING!

Warning of potential, hazardous situations. Especially important. One must acquaint with this before connecting the module.
The non-observance of notices marked by these symbols can occasion severe injuries of the personnel and the damage of the module.

CAUTION!

Designates a general useful note. If you observe it, handling of the module is made easier. One must take note of this, when the module is working inconsistently to the expectations. Possible consequences if disregarded!

In the security scope the module meets the requirements of the EN 61010-1 standard.

Remarks concerning the operator safety:

1. General

- The SM2 module is destined to be installed in measuring systems.
- Non-authorized removal of the required housing, inappropriate use, incorrect installation or operation create the risk of injury to personnel or damage to equipment. For more detailed information please study the user's manual.
- All operations concerning transport, installation, and commissioning as well as maintenance must be carried out by qualified, skilled personnel and national regulations for the prevention of accidents must be observed.
- According to this basic safety information, qualified, skilled personnel are persons who are familiar with the installation, assembly, commissioning, and operation of the product and who have qualifications necessary for their occupation.

2. Transport, storage

Please observe the notes on transport, storage and appropriate handling. Observe the climatic conditions given in Technical Data.

3. Installation

- The module must be installed according to the regulation and instructions given in this user's manual.
- Ensure proper handling and avoid mechanical stress.
- Do not bend any components and do not change any insulation distances.
- Do not touch any electronic components and contacts.
- Modules may contain electrostatically sensitive components, which can easily be damaged by inappropriate handling.
- Do not damage or destroy any electrical components since this might endanger your health!

4. Electrical connection

- Before switching the module on, one must check the correctness of connection to the network.
- In case of the protection terminal connection with a separate lead one must remember to connect it before the connection of the module to the mains.
- When working on live modules, the applicable national regulations for the prevention of accidents must be observed.
- The electrical installation must be carried out according to the appropriate regulations (cable cross-sections, fuses, PE connection). Additional information can be obtained from the user's manual.
- Apply a two-wire cable for the connection to the network acc. to the EN 61010-1 standard.
- Do not connect the module to the network through an autotransformer.
- In the building installation, a cut-out or a circuit-breaker should exist, situated near the device and easy accessible to the operator. It should be marked as the element switching the device out.
- The documentation contains information about installation in compliance with EMC (shielding, grounding, filters and cables). These notes must be observed for all CE-marked products.
- The manufacturer of the measuring system or installed devices is responsible for the compliance with the required limit values demanded by the EMC legislation.

5. Operation

- Measuring systems including SM1 modules must be equipped with protection devices according to the corresponding standard and regulations for prevention of accidents.
- After the instrument has been disconnected from the supply voltage, live components and power connections must not be touched immediately because capacitors can be charged.
- The housing must be closed during operation.
- The RS-232 socket serves only to connect the device (Fig.5) working with the MODBUS protocol. When the module is not used place the hole plug in the RS-232 socket of the module.

6. Maintenance and servicing.

Please observe the manufacturer's documentation.
Read all product-specific safety and application notes in this user's manual.

- Before taking the module out, one must turn the supply off.
- The removal of the module housing during the warranty contract period may cause its cancellation.

4. INSTALLATION

4.1 Way of fixing

The SM2 module is fixed on a 35 mm rail in accordance with EN 60715. The module housing is made of a self-extinguishing plastic. Overall dimensions of the housing: $45 \times 120 \times 100 \mathrm{~mm}$. One must connect to the module, external wires with crosssection up to $2.5 \mathrm{~mm}^{2}$
Overall dimensions and the fixing way are presented on the fig. 2.

Fig.2. Overall dimensions and way of fixing the module

4.2. External connection diagrams

Make the connection of input signals, supply and interface acc. to the fig. 3, 4 and 5

Fig. 3
Connection way of external signals. The connection diagram is also placed on the module housing

The polarization is optional when supplying by d.c. voltage.

	Measured signal													
	4 voltage inputs						4 current inputs							
	$4 \times 0 \ldots 10 \mathrm{~V}$						$4 \times 0 / 4 \ldots 20 \mathrm{~mA}$							
令	1 2	$3{ }^{3} 4$	5	6	7	8	1	2	3	4	5	6	7	8
			$\begin{aligned} & 1 \\ & + \\ & + \\ & \text { m } \\ & \stackrel{1}{3} \\ & \underline{a} \end{aligned}$	0					$\begin{aligned} & \square \\ & + \\ & + \end{aligned}$	$\begin{aligned} & \text { N} \\ & \stackrel{\rightharpoonup}{2} \\ & \end{aligned}$			0	$\stackrel{0}{-}$

Fig. 4 connection way of input signals

Taking in consideration electromagnetic interference one must use shielded wires to connect input signals and output signals. The supply must be connected by a two-wire cable, with the appropriate wire diameter ensuring its protection by means of a safety fuse.

5. HANDLING

After connecting external signals and switching the supply on, the SM2 module is ready to work.
The lighted green diode signals the module work. The green diode (RxD) signals the module polling, however the yellow diode (TxD) signals the module response. Diodes should ignite in cycles during the data transmission, both through the RS-232 and the RS-485 interface. One can program all module parameters by means of RS-232 or RS-485.
The RS-232 port has constant transmission parameters in accordance with technical data, what enables the connection with the module even when programmed parameters of the RS-485 digital output are unknown (address, mode, rate). The RS-485 standard allows to the direct connection to 32 devices on a single serial link up to 1200 m . To connect a greater number of devices, it is necessary to use additional intermediate-separating systems.
The way of the interface connection is given in the user's manual (fig.5). To obtain the correct transmission, it is necessary to connect \mathbf{A} and \mathbf{B} lines in parallel with their counterparts in other devices. The connection must be carried out with a screened wire. The screen must be connect to the protective terminal in a single point. The GND line serves to the additional protection of the interface line at long connections. One must connect it to the protective terminal (it is not necessary for the correct interface work). To obtain the connection with the PC computer through the RS485 port, an RS-232/RS-485 converter (e.g. PD51) or an RS-485 interface card is indispensable. The marking of transmission lines for the card in the PC computer depends on the card manufacturer. To obtain the connection through the RS-232 port, the wire added to the module is sufficient. The connection way of both ports (RS-232 and RS-485) is shown on the fig. 5.
The module can be connected to the device of master type only through one interface port. In case of a simultaneous connection of both ports, the module will work through the RS-232 interface.

5.1. Description of MODBUS protocol implementation

The transmission protocol describes ways of the information exchange between devices through serial links.
The MODBUS protocol has been implemented in the module in accordance with the PI-MBUS-300 Rev G specification of the Modicon company.
Set of parameters of the module serial link in the MODBUS protocol:

- Module address
- 1... 247
- Baud rate
- 2400, 4800, 9600, 19200, 38400, 57600, 115200 bit/s
- Working modes - RTU
- Information unit
- Maximal response time
- Maximal number of read/written register with one command
- RTU: 8N2, 8E1, 8O1, 8N1
- 100 ms .
- 30

The parameter configuration of the serial link is described in the further part of the user's manual. It consists on establishing the baud rate (Rate parameter), device address (Adr parameter) and the information unit type (Mode parameter).
In case of the module connection with the computer through the RS-232 wire, the module set automatically following transmission parameters:
Baud rate:
Working mode:
Address:
Notice: Each module connected to the communication network must:

- have a unique address, different from addresses of other devices connected to the network,
- identical baud rate and information unit type,
- the message sent with the address " 0 " is identified as the data transmission mode (transmission to many devices)
Only one module can be connected to the master's RS-232.

5.2. Description of the MODBUS protocol function

Opis funkcji

Code	Signification
$03(03 \mathrm{~h})$	Readout of n-register
$06(06 \mathrm{~h})$	Write of a single register
$16(10 \mathrm{~h})$	Write of n-registers
$17(11 \mathrm{~h})$	Slave device identification

Following functions of the MODBUS protocol have been implemented in the SM2 module

Readout of n-registers (code 03h)

The function is not accessible in the broadcast mode.
Example: Readout of 2 registers beginning by the register with the 1DBDh

Device address	Function	Register address		Number of registers		Checksum CRC
		Hi	Lo	Hi	Lo	
01	03	1 D	BD	00	02	5243

address (7613)

Device address	Function	Number of bytes	Value from the register 1DBD (7613)				Value from the register 1DBE (7614)			Check- sum CRC
01	03	08	3 F	80	00	00	40	00	00	00
428 BB										

Demand:
Answer:
Write of values in the register (code 06h)
The function is accessible in the broadcast mode.

Device	Function	Register address		Value for the register 1DBD (7613)				Checksum CRC
address		Hi	Lo					
01	06	1D	BD	3F	80	00	00	85 AD

Answer:

Device address	Function	Register address		Value from the register 1DBD (7613)				Checksum
		Hi	Lo					
01	06	1D	BD	3F	80	00	00	85 AD

Write in n-registers (code 10h)

The function is accessible in broadcast mode.
Example: Write of two registers beginning from the register with 1DBDh (7613) address
Demand:

Device address	就	Register address		Number of registers		Number of bytes	Value for the register1DBD (7613)				Value for the register 1DBE (7614)				Checksum CRC
01	10	1D	BD	00	02	08	3F	80	00	00	40	00	00	00	0309

Answer:

Device address	Function	Register address		Number of registers		Checksum CRC
		Hi	Lo	Hi	Lo	
01	03	1 D	BD	00	02	5243

Report identifying the device (code 11h)

Demand:

Device address	Function	Checksum (CRC)
01	11	C0 2C

Answer:

Device address	Function	Number of bytes	Device identifier	Device version	Check- sum
X	11	08	89	"SM2 c0XXX fY.YY -vSTANDARD"	

Device address	- depends on the set value
Function	- function number: 0×11
Number of bytes	- 0x08
Device identifier	- 0x89
Device state	- 0xFF
Field depended of the device	- XXXXXX
Output of OC type	- $0 \times 01-2$ outputs of OC type, $01 \times \times \times \times \times$
Type of input	- Field depended on the module execution code:
	- 0×00 - four $0 . . .10 \mathrm{~V}$ voltage inputs, $\mathrm{X} 00 \times \mathrm{X} \times \mathrm{X}$
	- 0×01 - four 0/4... 20 mA current inputs, $\mathrm{X} 01 \times \times \times \mathrm{X}$
	- 0×02 - two $0 . . .10 \mathrm{~V}$ voltage inputs, two 0/4... 20 mA current inputs, $\mathrm{X} 02 \times \mathrm{XXX}$
	- 0x03 - four Pt100 inputs or four resistance inputs up to 400Ω, $\mathrm{X} 03 \times \mathrm{XXX}$

Number of the
software version

Checksum

- software version implemented in the module X X____4-byte variable of float
- 2 bytes in case of work in RTU mode
- 1 byte in case of work in ASCII mode

Example:

Work in RTU mode, e.g. Mode = RTU 8N2 (value 0x02 in case of readout/write through the interface
The device address is set on $\mathbf{A d r}=\mathbf{0 x 0 1}$

For the SM2 module the answer frame has the following shape:

Device address	Function	Number of bytes	Device identifier	Device state	Field depending on the device type	Check- sum
01	11	08	89	FF	01013 F 800000	C3 60

Example: Write the register with 1DBDh (7613) address
Demand:
It is the SM2 module:

- with two OC type outputs
- with four 0/4... 20 mA current inputs
- software version: 1.00

$\begin{gathered} \text { F. Addregiste } \\ \text { range } \end{gathered}$	Tappe type	Description
7000-7200	float (32 bit)	The value is placed in two successive 16-bit registers. Registers contain the same data as 32 -bit registers from the area 7500 . The register is for readout only
7200-7400	float (32 bit)	The value is placed in two successive 16-bit registers. Registers contain the same data as 32-bit registers from the area 7600. Registers can be read out and written.
7500-7600	float (32 bit)	The value is placed in the 32-bit register. The register is for readout only.
7600-7700	float (32 bit)	The value is placed in the 32-bit register. Registers can be read out and written.

5.4. Registers only for readout

		Name		Unit	Quantity name	
7000	7500	Identifier	r	-	Constant identifying the device	
Value						
					0x89--h	SM2 identifier
					0x--00h	Four 0... 10 V voltage inputs
					0x--01h	Four 0/4... 20 mA currents
					0x--02h	Two $0 . . .10 \mathrm{~V}$ voltage input Two 0/4... 20 mA current input
					0x--03h	Four Pt100 inpus or Four resistance inputs up to 400Ω
7002	7501	Status 1	r	-	Status 1 is the register describing the present module state	
7004	7502	Status 2	r	-	Status 2 is the register describing the present module state	
7006	7503	W1	r	-	Measured value on the input 1	
7008	7504	W2	r	-	Measured value on the input 2	
7010	7505	W3	r	-	Measured value on the input 3	
7012	7506	W4	r	-	Measured value on the input 4	
7014	7507	WF	r	-	Calculated value basing on the function	
7016	7508	Min 1	r	-	Minimum of the measured value on the input 1	
7018	7509	Max 1	r	-	Maximum of the measured value on the input 1	
7020	7510	Min 2	r	-	Minimum of the measured value on the input 2	
7022	7511	Max 2	r	-	Maximum of the measured value on the input 2	
7024	7512	Min 3	r	-	Minimum of the measured value on the input 3	
7026	7513	Max 3	r	-	Maximum of the measured value on the input 3	
7028	7514	Min 4	r	-	Minimum of the measured value on the input 4	
7030	7515	Max 4	r	-	Maximum of the measured value on the input 4	
7032	7516	WF Min	r	-	Minimum of the calculated value	
7034	7517	WF Max	r	-	Maximum of the calculated value	

Description of the Status1 register

Bit-15... 12 Empty
Bit value is always equal 0

Bit-11 Signalling of the lower range exceeding of input 4

0 - normal work
1 - range exceeding

Bit-10 Signalling of the upper range exceeding of input 4

0 - normal work
1 - range exceeding

Bit-9 Signalling of the lower range exceeding of input 3

0 - normal work
1 - range exceeding
Bit-8 Signalling of the upper range exceeding of input 3
0 - normal work
1 - range exceeding
Bit-7 Signalling of the lower range exceeding of input 2
0 - normal work
1 - range exceeding
Bit-6 Signalling of the upper range exceeding of input 2
0 - normal work
1 - range exceeding

Bit-5 Signalling of the lower range exceeding of input 1
0 - normal work
1 - range exceeding
Bit-4 Signalling of the upper range exceeding of input 1
0 - normal work
1 - range exceeding
Bit-3 Individual characteristic of the input 4
0 - individual characteristic switched on
1 - individual characteristic switched off
Bit-2 Individual characteristic of the input 3
0 - individual characteristic switched on
1 - individual characteristic switched off
Bit-1 Individual characteristic of the input 2
0 - individual characteristic switched on
1 - individual characteristic switched off
Bit-0 Individual characteristic of the input 1
0 - individual characteristic switched on
1 - individual characteristic switched off

Description of the Status 2 register

											$\begin{aligned} & \stackrel{0}{0} \\ & \frac{\pi}{0} \\ & \stackrel{\rightharpoonup}{\tilde{m}} \\ & \end{aligned}$				
X	X	X	X	X	X	X	X	X	X	X	X	X	X	X	X
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

MSB
LSB

Bit-15 Empty

Bit value is always equal 0
Bit-14 Output 2 state of OC type
0 - OC switched off
1 - OC switched on

Bit-13 Output 1 state of OC type

0 - OC switched off
1 - OC switched on

Bit-12 State of measuring input 4

0 - input switched off (lack of measurement)
1 - input switched on

Bit-11 State of measuring input 3

0 - input switched off (lack of measurement)
1 - input switched on

Bit-10 State of measuring input 2

0 - input switched off (lack of measurement)
1 - input switched on

Bit-9 State of measuring input 1

0 - input switched off (lack of measurement)
1 - input switched on

Bit-8... 6 Working mode and information unit

100-8N2-RTU
101-8E1-RTU
110-801-RTU
111-8N1-RTU

Bit-5... 3 Baud rate

000-2400 bit/s
$001-4800 \mathrm{bit} / \mathrm{s}$
010-9600 bit/s
011-19200 bit/s
100-38400 bit/s
101-57600 bit/s
110-115200 bit/s
Bit-2... 0 Type of inputs
000-4 x $0 . . .10 \mathrm{~V}$
$001-4 \times 0 / 4 \ldots 20 \mathrm{~mA}$
010-2 x 0... $10 \mathrm{~V}, 2 \times 0 / 4 \ldots 20 \mathrm{~mA}$
$011-4 \times \mathrm{Pt} 100$ resistance thermometer inputs or $4 \times$ resistance inputs up to 400Ω
5.5. Registers for readout and write

Table 1

7218	7609	X1 W1	W/r	-99999... 99999	Parameters of the individual characteristic of input 1
7220	7610	Y1 W1	W/r	-99999...99999	On the base of given co-ordinates of two points by the user the module determines (from the system of equations) coefficients a and b of the individual characteristic. $\left\{\begin{array}{l} \mathrm{Y} 1 \mathrm{~W} 1=\mathrm{a} \cdot \mathrm{X} 1 \mathrm{~W} 1+\mathrm{b} \\ \mathrm{Y} 2 \mathrm{~W} 1=\mathrm{a} \cdot \mathrm{X} 2 \mathrm{~W} 1+\mathrm{b} \end{array}\right.$ where: X1 W1 and X2 W1 - measured value Y1 W1 and Y2 W1 - Expected value on the digital output. The graphical presentation of the individual characteristic is presented on the fig. 6. At output signal recalculations, at first the module recalculates the value on the base of the individual characteristic and then, this result is transmitted to the arithmetic function,
7222	7611	X2 W1	W/r	-99999... 99999	
7224	7612	Y2 W1	W/r	-99999...99999	
7226	7613	Input 2	W/r	0... 1	Switching ON/OFF of the measuring input 2
					Value
					0 Measuring input switched off
					1 Measuring input switched on
					In case of the input off the value 0 is returned
7228	7614	Typ W2	W/r	0... 1	Input 2 type
					Range of changes as for the W1 type
7230	7615	Cnt W2	W/r	0... 6500	Measurement averaging time of the input 2
					Range of changes as for the Cnt W1 type
7232	7616	Ind W2	W/r	0... 1	Individual characteristic of the input 2
					Value
					0 off
					on
7234	7617	X1 W2	W/r	-99999...99999	Parameters of the individual characteristic of input 2
7236	7618	Y1 W2	W/r	-99999...99999	The range changes as for: X1 W1, Y1 W1, X2 W1, Y2 W1
7238	7619	X2 W2	W/r	-99999...99999	
7240	7620	Y2 W2	W/r	-99999...99999	

7336	7668	Comp W3	W/r	0... 40	Resistance value of wires connecting the sensor with the module input 1 The register is used only in the execution for the resistance or temperature measurement
7338	7669	Comp W4	W/r	0... 40	Resistance value of wires connecting the sensor with the module input 1 The register is used only in the execution for the resistance or temperature measurement
7340	7670	Standard	W/r	0... 1	Restoration of manufacturer's parameters
					Value
					0 lack of operation
					1 l\|lWrite of manufacturer's parameters
					Introduction of the value 1 will cause the write of manufacturer's parameters into the module acc. to the table. 2

$$
\text { * } i=1 \ldots 4
$$

X 1 Wi value in the module input of systems => Y1 W1 digital value X2 Wi value in the module input of systems => Y2 W1 digital value Other points of the characteristic are calculated

Fig. 6. Individual user's characteristic

Fig. 7. Types of OC1 and OC2 output

Fig. 8 Digital filter
In the case where the measurement is unstable, you can enable the digital filter with a programmable time constant. You need to set the minimum filter time constant at which the measurement is stable. A high time constant can cause delays in reading the rapid changes in the measurement.

Caution!

- In the execution for the measurement of resistance or temperature (Pt100) only the two-wire method is accessible. The resistance of the wire connecting the sensor with the module must be introduced from the master device (e.g. PC). For this purpose we propose:
- switch the module into the resistance measurement mode,
- short-circuit the ends of wires which the sensor is fixed to,
- read out the numeric value which represents the resistance of both wires,
- introduce the read out value into the Comp WX ($\mathrm{X}=1$ 1.. 2) register of the appropriate input.
Each input has a separate compensation register. The described procedure must be carried out for switched on measuring inputs. The resistance can be also measured by any meter (class $<0.1 \%$) and introduced into registers.
- In case on user's individual characteristic switched on, the measured result is linearly transformed in accordance with introduced \mathbf{X} and \mathbf{Y} parameters. Then, the calculated value is found in the result register.
- In case of mathematical operations switching on, the result in the WF register is calculated in accordance with the equation introduced to the module. Sequence of calculations: result recalculation basing on the user's individual characteristic (if it is switched on), calculation of the introduced function, carrying out the operation on the function result.
- The module supervises currently the value of the introduced parameter . In case when the introduced value is beyond the range of changes given in the table 1 , the module does not make the parameter write.

Symbol	Manufacturer's value
Input 1,2,3,4	1 (switched on)
Cnt W1, Cnt W2, Cnt W3, Cnt W4	1 (1 s)
Ind W1, Ind W2, Ind W3, Ind W4	0 (switched off)
X1 W1, X1 W2, X1 W3, X1 W4	0
Y1 W1, Y1 W2, Y1 W3, Y1 W4	0
X2 W1, X2 W2, X2 W3, X2 W4	0
Y2 W1, Y2 W2, Y2 W3, Y2 W4	0
A,B,C,D	0 (switched off)
Operator 1,2,3	0 („, ${ }^{\prime \prime}$)
Operator WF	0 (switched off)
Rate	2 (9600)
Mode	4 (RTU 8N2)
Address	1
OC1	0 (input 1)
Typ OC1	4 (switched off manually)
Prl OC1	0
Prh OC1	0
Dly OC1	0 (lack of delay)
OC2	0 (Input 1)
Typ OC2	4 (switched off manually)
Prl OC2	0
Prh OC2	0
Dly OC2	0 (lack of delay)
Comp W1, Comp W2, Comp W3, Comp W4	0

6. TECHNICAL DATA

INPUTS:

Depending on the execution code for individual channels:

- voltage measurement $\quad 0 . . .10 \mathrm{~V} \quad$ input resistance $>1 \mathrm{M} \Omega$
- current measurement $\quad 0 \ldots 20 \mathrm{~mA}$ input resistance $<10 \Omega$
- resistance measurement $0 . . .400 \Omega$
- Pt100
$(-200 \ldots+850)^{\circ} \mathrm{C}$
Current flowing through the Pt 100 sensor: < $250 \mu \mathrm{~A}$
Resistance of leads connecting the resistance thermometer with the module: $\quad \max 20 \Omega$ /wire
Pt100 characteristic
Error detection in measuring circuit:
voltage measurement
current measurement
Pomiar rezystancji
Pt100
below -0.5 V and above 10.5 V
below -1 mA and above 21 mA
below 420Ω
measuring range exceeding

OUTPUTS:

- open collector (OC)
voltageless of OC type with npn transistor
(maximal load 25 mA)
range of added voltages: 5... 24 V d.c.
- digital
a) RS-485 interface
transmission protocol
RTU
baud rate address
b) RS-232 interface transmission protocol RTU
baud rate address

MODBUS
8N2, 8E1, 8O1, 8N1
2400... 115200 bauds
1... 247
maximal response time to the query frame: $100 \mathrm{~ms}^{11}$.
Basic error
0.1% of measuring range
Additional error from ambient temperature changes
\pm (0.1% of range/10K)
Measurement time of a single input:
$100 \mathrm{~ms} . .400 \mathrm{~ms}$

Rated operation conditions:

- supply voltage depending on the execution code
85... 253 V a.c./d.c.
20... 50 V a.c./d.c.
- supply voltage frequency
40... 440 Hz
- ambient temperature
$-10 . . .23 . . .55^{\circ} \mathrm{C}$
- storage temperature
- relative humidity
- preheating time
$-25 . . .+85^{\circ} \mathrm{C}$
< 95\% (condensation inadmissible)

Sustained overload:

- resistance thermometers 1\%
- measurement of voltage, current and resistance 10\%

Short-duration overload (3 s):

- voltage input 10 Un
- current input 10 In

Ensured protection grade acc. to EN 60529:

- through the housing

IP 40

- electrical connections

IP 20
Dimensions $45 \times 120 \times 100 \mathrm{~mm}$

Weight
$<0.3 \mathrm{~kg}$
Fixing
on a 35 mm rail
Power consumption
<4VA
Resistance against decays
acc. to EN 50082-2

Electromagnetic compatibility:

- immunity
acc. to EN 50082-2
- emission acc. to EN 50081-2
- additional error from electromagnetic hazard < 0.2\%

Safety requirements acc. to EN 61010-1 standard:

- installation category
- pollution grade
- phase-to-earth working voltage:
- supply
- input
- output 50 V
4

300 V
50 V
50 V

${ }^{1)}$ response time for readout

7. BEFORE A FAILURE WILL BE DECLARED

In case of incorrect symptoms please to acquaint with the table below.

SYMPTOMS	PROCEDURE	REMARKS
1. The module diode is not illuminated.	Check the connection of the network cable	
2. The module does not communicate with the device master via the RS-232 port. Lack of transmission signalling on RxD and TxD diodes.	Check if the wire is connected to the appropriate module socket. Check if the device master is set on 9600 baud rate, 8 N 1 mode and address 1.	(RS-232 has constant transmission parameters)
3. The module does not communicate with the device master via the RS-485 port. Lack of transmission signalling on RxD and TxD diodes.	Check if the wire is connected to the appropriate module terminal. Check if the device master is set on the same transmission parameters as the module (baud rate, mode, address). In case of necessity to change transmission parameters when we cannot communicate through RS-485 one can use the RS-232 port which has constant transmission parameters (in case of further problems, see the section 2). After changing e RS-485 parameters into the required one, one can switch over on RS-485 port.	
4. The module returns the value 0 on the given input.	Check if the input which the value 0 is returned on, is not switched out and if the averaging time is $>0.1 \mathrm{~s}$. Check if the user's individual characteristic with zero parameters is not switched on.	
5. The result in WF register (function result) is inconsistent with our expectations,	Check the correctness of the introduced formula. Check if the operation sequence is correct. The operator weight is essential - at first, multiplication and division are carried out and next, addition and subtraction. Perhaps it is sufficient to reorder results in the formula. See programming examples in the section 8	
6. In result registers the IE20 value is min or max	Check the correctness of the input signal connection. The IE20 value is set when the measured signal is beyond the measuring range. The recorded IE20 value in max and min registers remains till the time of its erasing by the user.	
7. The value of the measured resistance or temperature is overstated.	Check if correct values of the wires' resistance have been introduced to Comp W1, Comp W2, Comp W3 and Comp W4 registers. In case of necessity, one must introduce this value. See the user's manual under the description of the Status 2.	Concerns only the module for resistance measurement or for co-operation with a Pt100 sensor.

8. EXAMPLES OF SM2 MODULE PROGRAMMING

Example 1: Switching appropriate measuring inputs and digital filter on

Module operation with two inputs (e.g. 1 and 3). The first input has the filter with time constant of $100 \mathrm{~ms}(0.1 \mathrm{~s})$ and the third input with a 100 s constant time.
One must program the parameter:

- Input $1=1$
- Input $2=0$
- Input $3=1$
- Input $4=0$
- \quad Cnt W1 $=0.1$
- Cnt W3 = 100

The module will carry out the measurement on the input 1 and 3.
In the register corresponding to first input, the result will be refreshed every 100 ms and in the register corresponding to third register, every 10 minutes.

Example 2: Programming the user's individual characteristic

One must program the module in such a way that it measures the water level in a tank with characteristic: $4 \mathrm{~mA}=>0 \mathrm{~m} ., 20 \mathrm{~mA}=>3.6 \mathrm{~m}$. in the input 1 , whereas on the input 2, the temperature with characteristic: $4 \mathrm{~mA}=>0^{\circ} \mathrm{C}, 20 \mathrm{~mA}=>50^{\circ} \mathrm{C}$
One must program the parameter:

- Ind W1 = 1
- X1 W1 = 0
- Y1 W1 = 0
- $\mathrm{X} 2 \mathrm{~W} 1=3.6$
- Ind $W 2=1$
- $\mathrm{X} 1 \mathrm{~W} 2=4$
- Y1 W2 = 0
- $\mathrm{X} 2 \mathrm{~W} 2=20$
- $\mathrm{Y} 2 \mathrm{~W} 2=50$

Example 3: Programming mathematical function

One must program the module in such a way that it measures the current on the input 1, the voltage on the input 2, and calculate the apparent power of the variable signal. The module is working with transducers of variable signal into a standard signal, e.g. P11Z transducer. The measurement of max current $=1200 \mathrm{~A}(0=\rightarrow$ $4 \mathrm{~mA} ; 1200 \mathrm{~A}=\rightarrow 20 \mathrm{~mA})$, measurement of max voltage $=400 \mathrm{~V}(0 \mathrm{~V}=\rightarrow 0 \mathrm{~V}$; $400 \mathrm{~V}=\rightarrow 10 \mathrm{~V}$).
One must program the parameter:

- Ind $\mathrm{W} 1=1$
- X1 W1 = 4
- Y1 W1 = 0
- $\mathrm{X} 2 \mathrm{~W} 1=20$
- $\mathrm{Y} 2 \mathrm{~W} 1=1200$
- Ind $\mathrm{W} 2=1$
- X1 W2 = 0
- $\mathrm{Y} 1 \mathrm{~W} 2=0$
- $\mathrm{X} 2 \mathrm{~W} 2=10$
- Y2 W2 = 400
one must carry out the following equation: $S=U \cdot I$
- $A=1$ (result from input 1)
- $\mathrm{B}=2$ (result from input 2)
- Operator $1=2$ (multiplication).

The apparent power 0... 480000 VA will be calculated in the WF register, whereas the $0 . .1200 \mathrm{~A}$ current in the result register 1 , and the $0 . . .400 \mathrm{~V}$ voltage in the result register 2.

Example 4: Programming mathematical function

The module is working with:
On the input 1 -> a.c. current transducer on standard signal, e.g. P11Z.
Current measurement on the 5 A range (transducer characteristic -> $0 \mathrm{~A}=>4 \mathrm{~mA}$, $5 \mathrm{~A}=>20 \mathrm{~mA}$).

On the input 2 -> a.c. voltage transducer on standard signal, e.g. P11Z.
Voltage measurement on the 400 V range (transducer characteristic -> $0 \mathrm{~V}=>0$ V
$400 \mathrm{~V}=>10 \mathrm{~V}$)
On the input 3 -> active on standard signal, e.g. P34P or PP84
Active power measurement on the 2000 W range (transducer characteristic 0 $\mathrm{W}=>4 \mathrm{~mA} 2000 \mathrm{~W}=>20 \mathrm{~mA}$.

Its task is to transmit voltage, current and reactive power values to the system.
One must program the parameter:

- Ind W1 = 1
- X1 W1 = 4
- Y1 W1 = 0
- X2 W1 = 20
- Y2 W1 = 5
- Ind W2 = 1
- $\mathrm{X} 1 \mathrm{~W} 2=0$
- $\mathrm{Y} 1 \mathrm{~W} 2=0$
- $\mathrm{X} 2 \mathrm{~W} 2=10$
- $\mathrm{Y} 2 \mathrm{~W} 2=400$
- Ind W3 = 1
- X1 W3 = 4
- Y1 W3 = 0
- X2 W3 = 20
- $\mathrm{Y} 2 \mathrm{~W} 3=2000$

One must carry out the following formula:
$Q=\sqrt{S^{2}-P^{2}}=\sqrt{(U \cdot I)^{2}-P^{2}}=\sqrt{U^{2} \cdot I^{2}-P^{2}}$
And program as follows:

- $A=10$ (squared result from the output 2)
- $B=9$ (squared result from the output 1)
- $C=11$ (squared result from the output 3)
- Operator $1=2$ (multiplication)
- Operator $2=1$ (subtraction)
- Operator $W F=1$ (extraction of roots from the function result)

The reactive power $0 \ldots 2000$ var ($Q=\sqrt{S^{2}-P^{2}}$) will be calculated in the WF register, whereas the current $0 \ldots .5 \mathrm{~A}$ in the result 1 register, the voltage $0 \ldots . .400 \mathrm{~V}$ in the result 2 register and the active power $0 \ldots 2000 \mathrm{~W}$ in the result 3 register.

Example 5 : Programming mathematical function

The example is based on the example 4, but instead the calculation of the reactive power, one must calculate $\cos \varphi$.

- We program individual characteristic parameters acc to the example 4, however the function must be programmed acc. to the formula:

$$
\cos \varphi=\frac{P}{S}=\frac{P}{U \cdot I}
$$

We must program:

- A = 3 (result from the input 3, power)
- $B=2$ (result from the input 2, voltage)
- $\mathrm{C}=1$ (result from the input 3, current)
- Operator1 = 3 (division)
- Operator2 $=3$ (division)

We have to pay attention to the weight of mathematical operations. At first, the multiplication and division are carried out, and next, the subtraction and addition.

Since the weight of multiplication and division are the same, the first operation in the formula is carried out.
For this reason, the given formula above must be written as:

$$
\cos \varphi=\mathrm{P} / \mathrm{U} / \mathrm{I} \text { and not as P/U *I. }
$$

In the WF register, the phase displacement angle will be calculated:

$$
\left(\cos \varphi=\frac{P}{S}=\frac{P}{U \cdot I}\right),
$$

However, the current $0 \ldots 5 \mathrm{~A}$ in the result 1 register, the voltage $0 \ldots 400 \mathrm{~V}$ in the result 2 register and the active power $0 . . .2000 \mathrm{~W}$ in the result 3 register.

Example 6 : Programming the OC type input

One must program the module such a way that the OC1 output could react on the input 1 and the OC2 output on the input 4 . The signal on the input 4 is recounted into temperature $\left(4 \mathrm{~mA}=0^{\circ} \mathrm{C} ; 20 \mathrm{~mA}=100^{\circ} \mathrm{C}\right)$ The OC 1 output is to be actice in the interval $2 \ldots 4 \mathrm{~V}$, and the OC 2 output is to be active after exceeding $50^{\circ} \mathrm{C}$ and be desactivated below $20^{\circ} \mathrm{C}$.
One must program the parameter:

- Ind $\mathrm{W} 4=1$
- X1 W4 = 4
- Y1 W4 = 0
- X2 W4 = 20
- Y2 W4 = 100
- OC1 = 0
- Typ OC1 = 1
- Prl OC1 = 2
- Prh OC1 = 4
- $\mathrm{OC} 2=3$
- Typ OC2 = 0
- Prl OC1 = 20
- Prh OC1 = 50

The OC1 output will operate acc. to the fig. 7a and the OC2 output acc. to the fig. 7d.

9. ORDERING CODES

SM2 Module	XX	X	X
Input signal*:			
4 voltage inputs	$0 . .10$ V 00		
4 current inputs	0/4... $20 \mathrm{~mA} . ~ 01 ~$		
2 voltage input +2 current input	0... $10 \mathrm{~V}+0 / 4 . .20 \mathrm{~mA} ~ 02 ~$		
4 resistance or Pt100 inputs	Pt100 or resistance $<400 \Omega \ldots .03$		
on order**. XX		
Supply:			
85... 253 V a.c./d.c... 1			
20... 50 V a.c./d.c... 2			
on order **.			
Acceptance tests:			
without a quality inspection certificate ... 8			
with a quality inspection certificate ... 7			
acc. customer's agreement**			

* Possible version of a cheaper module with a smaller quantity of inputs. Possibility to mix input kinds (e.g. 1 voltage and 3 current inputs).
** Code numbers must be agreed with the manufacturer.

EXAMPLE OF ORDER

When ordering, please respect successive code numbers.
Code: SM2 0110 means:
SM2 - 2-channel module of analog inputs,
01 - module with 4 current inputs $0 / 4 \ldots 20 \mathrm{~mA}$,
1 - supply voltage: 85 ... 253 V a.c./d.c.
8 - without a quality inspection certificate.

LUMEL

LUMEL S.A.
ul. Słubicka 4, 65-127 Zielona Góra, Poland tel.: +48 684575 100, fax +48 684575508 www.lumel.com.pl

Technical support:

tel.: (+48 68) 4575 143, 4575 141, 4575 144, 4575140
e-mail: export@lumel.com.pl

Export department:

tel.: (+48 68) 4575 130, 4575 131, 4575132
e-mail: export@lumel.com.pl

Calibration \& Attestation:

e-mail: laboratorium@lumel.com.pl

